

Lecture Scope

- Quality: definition
- Selection of weld quality level and acceptance standards
- Role of inspection and the inspector
- Inspection plan
- Non-destructive examination and other test methods

- In engineering terms, an item has the right quality if it performs satisfactorily through-its intended life
- Quality is "fitness for purpose"

Specifying Weld Quality Standards

- Selection of a quality level involves balancing design, manufacturing and inspection practices to achieve fitness-for-service at the lowest total cost.
- Specifying needlessly high quality levels adds cost to a structure with no benefit
- Conversely, inadequate quality leads to structural failure, increased maintenance costs, foregone revenues, and loss of life or property.

Specifying Weld Quality Standards

- Selection of a quality level involves balancing design, manufacturing and inspection practices to achieve filness-for-service at the lowest total cost.
- Specifying needlessly high quality levels adds cost to a structure with no benefit
- Conversely, inadequate quality leads to structural failure, increased maintenance costs, foregone revenues, and loss of life or property.

1. Service conditions

- Loads:
 - magnitude, constant or cyclic, static or dynamic. Resultant stress levels, margins against yielding, fatigue and fracture
- Working temperatures
 - Low temperatures may pose a risk of brittle fracture. High temperature can lead to creep and other metallurgical effects
- Ambient environment:
 - corrosion and oxidation, stress corrosion cracking, wear, erosion

l

- 1. Service conditions
- 2. Material and weld properties
 - Effects of welding on strength, toughness, fatigue and corrosion resistance

- 1. Service conditions
- 2: Material and weld properties
- 3. Risk of defects
 - Welds may contain various defects that reduce their strength and resistance to failure

(

- 1. Service conditions
- 2. Material and weld properties
- 3. Risk of defects
- 4. Inspection adequacy
 - Inspection may be less than 100% efficient, due to:
 - process inefficiency
 - sampling error
 - human failure
 - Consequently, welds after inspection are not necessarily free from all defects

- 1. Service conditions
- 2. Material and weld properties
- 3. Risk of defects
- 4. Inspection adequacy

5. Consequences of failure

- The consequences of structural failure tend to increase with:
 - size
 - stored energy (pressure vessels, towers)
 - toxic contents (vessels, tanks, piping)
 - proximity to people

- --

 redundancy (duplication of critical components may reduce the consequencies of failure)

Inspection Plans

- While inspection of simple items can be left to the discretion of individual inspectors, complex structures are usually inspected according to a defined inspection plan
- Inspection plans should be designed to give assurance that the specified quality levels are met
- Plans should specify:
 - Items to be inspected
 - At what stage in manufacture (inspection hold points)
 - Inspection methods and procedures
 - Acceptance criteria

- In some cases 100% inspection of all production is required
- In others, sampling procedures are applied
 - Sampling may be partial
 - a specified proportion is inspected
 - progressive examination may be employed in which the frequency of sampling is increased if rejections exceed a certain percentage
 - Sampling may be statistically-based
 - statistical sampling plans use probability theory to make inferences about production quality

Responsibility for Quality

- The contracting company is responsible for the quality of its work
- The contractor normally employs its own quality control staff
- The purchaser or his agent "the Engineer" may hire an inspector to verify the contractor's work
- Known as "third-party" inspection
 e.g. ASME Code requirements for third party inspection

Inspector Qualifications

- Welding inspectors must be familiar with the product, engineering drawing and specification, codes and standards, and manufacturing and inspection procedures.
- Inspectors may be qualified to standards such as:
 - Canadian Standard W178 "Qualification Code for Welding Inspection Organisations"
 - American Welding Society Welding Inspector Qualification and Certification Program

.

Common NDE Methods

- Codes and standards for welded structures commonly specify one or more of the following NDE methods:
 - Visual examination (VT)
 - Liquid Penetrant (PT)
 - Magnetic Particle (MT)
 - Radiography (RT)
 - Ultrasonic examination (UT)

ſ

- Visual
 - Visual examination is the most commonly applied_method of inspection
 - It is simple and inexpensive, does not normally require special equipment and gives important information about conformity with specifications, eg.
 - joint preparation and alignment
 - weld size and appearance
 - dimensional accuracy
 - absence of visible defects
 - Visual inspection is limited to conditions on the surface conditions

- Visual
- Penetrant inspection
 - Penetrant inspection uses a dye or fluorescent penetrant to make surface flaws readily visible
 - equipment and materials can be simple and portable
 - limited to surface-breaking flaws

- Visual
- Penetrant inspection
- Magnetic Particle Inspection
 - Uses clisturbances in the magnetic field in a magnetized steel component to indicate the presence or surface or near-surface flaws
 - Equipment and materials are simple and portable
 - Limited to surface or near-surface flaws on ferromagnetic materials (steel)

- Visual
- Penetrant inspection
- Magnetic Particle Inspection
- Radiography
 - absorption of radiation from gamma or x-ray sources indicates weld defects with significant height parallel to the beam direction
 - X-ray equipment is costly and non-portable; gamma ray sources can be used in-situ
 - Principal limitations are safety hazards from radiation and lack of sensitivity to planar defects oriented normal to radiation beam

- Visual
- Penetrant inspection
- Magnetic Particle Inspection
- Radiography
- Ultrasonic examination
 - Echo and diffraction of high frequency sound pulses indicates the flaws or non-uniformities within the material
 - Equipment and probes are complex but portable
 - Limitations: requires skilled operator, no record of results, may be prone to false echoes and indications

Other Test methods

- Proof Testing
 - Of pressure vessels, often takes the form of a hydrostatic or pneumatic pressure test above the design pressure
 - Of other structures may include test loading--e.g. by placing sandbags or scrap iron--to verify the capacity of the structure
- Leak Testing
 - Of closed vessels or pipes
 - sensitivity may be improved by addition of tracer gas e.g. helium
- Destructive tests
 - removal of specimens of material for testing or examination
 - testing of sample products

(